Vector Representation of Non-Harmonic Alternating Currents

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mod p structure of alternating and non-alternating multiple harmonic sums

The well-known Wolstenholme’s Theorem says that for every prime p > 3 the (p−1)-st partial sum of the harmonic series is congruent to 0 modulo p2. If one replaces the harmonic series by ∑ k≥1 1/n for k even, then the modulus has to be changed from p2 to just p. One may consider generalizations of this to multiple harmonic sums (MHS) and alternating multiple harmonic sums (AMHS) which are partia...

متن کامل

Congruences of Alternating Multiple Harmonic Sums

By convention we set H(s;n) = 0 any n < d. We call l(s) := d and |s| := ∑d i=1 |si| its depth and weight, respectively. We point out that l(s) is sometimes called length in the literature. When every si is positive we recover the multiple harmonic sums (MHS for short) whose congruence properties are studied in [9, 10, 17, 18]. There is another “non-strict” version of the AMHS defined as follows...

متن کامل

on the representation theory of the alternating groups

we present the basic results on the representation theory of the alternating groups. our approach is based on clifford theory.

متن کامل

Congruences involving alternating multiple harmonic sum

We show that for any prime prime p = 2 p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the l.h.s. as a combination of alternating multiple harmonic sums.

متن کامل

Congruences Involving Alternating Multiple Harmonic Sums

We show that for any prime prime p = 2, p−1 k=1 (−1) k k − 1 2 k ≡ − (p−1)/2 k=1 1 k (mod p 3) by expressing the left-hand side as a combination of alternating multiple harmonic sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review (Series I)

سال: 1909

ISSN: 1536-6065

DOI: 10.1103/physrevseriesi.29.409